THE TOM DIECK SPLITTING THEOREM IN EQUIVARIANT MOTIVIC HOMOTOPY THEORY

نویسندگان

چکیده

Abstract We establish, in the setting of equivariant motivic homotopy theory for a finite group, version tom Dieck’s splitting theorem fixed points suspension spectrum. Along way we establish structural results and constructions independent interest. This includes geometric fixed-point functors Adams isomorphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Homotopy Theory

In this note we announce an obstruction theory for extending (continuous) equivariant maps defined on a certain class of G-spaces, where G is a compact Lie group. The details of this work will be published elsewhere. Our results barely touch upon the attendant problem of providing techniques that would serve in practice for the computation of the obstruction groups. In general this last problem...

متن کامل

Equivariant stable homotopy theory

We will study equivariant homotopy theory for G a finite group (although this often easily generalizes to compact Lie groups). The general idea is that if we have two G-spaces X and Y , we’d like to study homotopy classes of equivariant maps between them: [X,Y ] = Map(X,Y )/htpy, where Map(X,Y ) = {f : X → Y |f(gx) = gf(x) for all g ∈ G}. In classical homotopy theory (i.e. when G is the trivial...

متن کامل

Galois Equivariance and Stable Motivic Homotopy Theory

For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and η (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full a...

متن کامل

Motivic Homotopy Theory of Group Scheme Actions

We define an unstable equivariant motivic homotopy category for an algebraic group over a Noetherian base scheme. We show that equivariant algebraic K-theory is representable in the resulting homotopy category. Additionally, we establish homotopical purity and blow-up theorems for finite abelian groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of The Institute of Mathematics of Jussieu

سال: 2021

ISSN: ['1474-7480', '1475-3030']

DOI: https://doi.org/10.1017/s1474748021000372